Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • SSTL to lead UKSA de-orbit of space debris study

Space

SSTL to lead UKSA de-orbit of space debris study

Surrey Satellite Technology Ltd (SSTL) has been selected to lead a UK Space Agency (UKSA) study to define the mission requirements for a complex mission to de-orbit two non-operational space debris targets.

Above: The LEOPARD (Low Earth Orbit Pursuit for Active Debris Removal) study will define concepts for de-orbiting two uncooperative UK space assets from low earth orbit.
Courtesy SSTL / copyright Shutterstock

SSTL specialises in the manufacture and in-orbit operation of small satellites and has valuable experience in two previous Active Debris Removal (ADR) demonstration missions; RemoveDEBRIS, which concluded a series of debris retrieval demonstrations in January 2019, and Astroscale’s 2021 ELSA-d mission for which SSTL supplied the Client 'target' satellite.

Advertisement
ODU RT

The LEOPARD study will be led by SSTL and delivered by a consortium of leading UK space companies and academia to benefit from the wide breadth of specialised expertise required to deliver a successful Active Debris Removal (ADR) mission. The LEOPARD consortium includes Airbus Defence and Space, GMV NSL, Northern Space and Security Limited (NORSS), Satellite Applications Catapult, University of Lincoln, University of Surrey and ClearSpace.

SSTL’s CERISE satellite was the first verified case of an accidental collision between two manufactured objects in Space back in 1996. CERISE was hit by a catalogued space debris object from an Ariane rocket in 1996, making it the first verified case of a collision between two objects in space.  The collision tore off a portion of the satellite’s gravity-gradient stabilisation boom, which left the satellite severely damaged, and its performance was compromised.

Today the European Space Agency say that they perform on average two manoeuvres per Earth orbiting satellite per year with the number of conjunction warnings increasing over time, and the recent anti-satellite missile test conducted by Russia which created a cloud of new debris at an altitude of between 440km and 520km above Earth, has brought the topic of space debris to the fore once again.

Currently more than 30,000 manufactured non-operational objects are regularly tracked around the Earth, however many millions of minor objects remain undetected and because the UK is reliant on satellites for services that support critical national infrastructure such as navigation, telecommunications, security and weather forecasting, it has become crucial to remove space debris and prevent further collisions between objects.

“SSTL understands the risks of space debris.” said SSTL’s Managing Director, Phil Brownnett. “We have significant expertise derived from over 500 operational satellite years and together with our work on ADR demonstrator missions such as RemoveDEBRIS and Astroscale’s ELSA-d we are driving new concepts and technologies capable of delivering a milestone double Active Debris Removal mission for the UK.

"We are committed to combating the issue of space debris to keep satellites operating safely and provide a sustainable future for space missions.”
 
Jacob Geer, Head of Space Surveillance and Tracking at the UK Space Agency, said: “Space debris poses a growing risk to satellites and the vital services they provide, as well as to human spaceflight and astronauts. This new project will draw on SSTL’s significant expertise and map out a new mission to remove defunct satellites from orbit. It’s a great example of how the UK space sector is playing a leading role in keeping the space environment safe and secure.”

The LEOPARD study will define concepts for de-orbiting two un-co-operative UK space assets from low earth orbit to demonstrate ADR techniques, and will also present options for re-purposing the chaser spacecraft once the ADR task is complete, including the ability to be refuelled upon mission completion in order to allow the satellite to capture and remove even more debris. SSTL has a number of end-of-life satellites in orbit that could be selected as targets for the LEOPARD ADR mission, an advantage that provides additional knowledge of the target spacecraft design and operational state – crucial factors for the success of an ADR mission.

ADR missions are complex and characterisation of the debris target is critical before attempting a capture. It is essential to determine the state of the spacecraft or object including orientation, roll speed and axis of rotation, and the physical condition of the object (broken appendages, peeling or flaking surface materials) to assess the lowest risk for a successful capture and control.

Some target characterisation will be achievable from the ground, however in-orbit characterisation and close-up inspection will be essential. Once the target is characterised, a close approach can be facilitated by a sensor suite on board the chaser satellite to keep track of the target and the relative distance between them, and complete manoeuvres on the final capture approach.  Once the chaser captures the target, the dynamics of the coupled two-body object will rapidly change requiring precise control for completion of the ADR mission.  

The LEOPARD study will define several possible ADR mission concepts, using modelling and evaluation of the key technologies.

Examples of ADR capture technologies to be considered include:

Advertisement
DSEI 2025
  • Capture using a dextrous robotic arm with refuelling interface
  • Cooperative debris capture using a chaser satellite for rendezvous, docking and de-orbit
  • Tethered space tug
  • Net capture device
  • Transporter chaser with multiple single-use chaser ADR spacecraft for future use

Examples of ADR de-orbit technologies to be considered include:

  • De-orbit propulsive pack attached to the target
  • Tether
  • Drag sail

A second phase of the study will propose different methods of refurbishing the chaser spacecraft such as refuelling and addition of extra modules.

Consortium member roles:

  • SSTL – spacecraft prime
  • Airbus Defence and Space – robotics and ADR capture systems, and In Orbit Servicing capabilities
  • GMV NSL – mission analysis, tools and Guidance, Navigation & Control software
  • NORSS – orbital analysis, space situational awareness, regulatory and risk management expertise
  • The Satellite Applications Catapult – ground segment and In Orbit Servicing and Manufacturing  simulator
  • University of Lincoln – mathematical modelling of close-coupled system dynamics  and robotics test facilities
  • University of Surrey – vision instruments for close proximity operations and passive de-orbit technologies
  • ClearSpace – customer consultants, analysis of future market needs
Advertisement
Roke Roke
ACES docked with ISS

Space

ACES docked with ISS

22 April 2025

Following its Falcon 9 launch from Kennedy Space Center, the Airbus-built ACES (Atomic Clock Ensemble in Space) has now docked with the International Space Station (ISS).

New scientific experiments and supplies delivered to ISS

Space

New scientific experiments and supplies delivered to ISS

22 April 2025

Following the successful launch of NASA's SpaceX 32nd Commercial Resupply Services mission, new scientific experiments and supplies are being delivered to the International Space Station (ISS).

CGI VirtualFlightRecorder to enhance aviation safety

Aerospace Space

CGI VirtualFlightRecorder to enhance aviation safety

15 April 2025

CGI today announced an expansion of the Universal Virtual Flight Data Recorder (UVFDR) initiative, developed with support from the European Space Agency (ESA) and the UK Space Agency (UKSA) under the Business Applications and Space Solutions (BASS) programme.

UK and Cyprus strengthen space ties

Space

UK and Cyprus strengthen space ties

14 April 2025

Cyprus and the UK are set to collaborate more closely on space activities following a bilateral event held in Nicosia on 27th-28th March.

Advertisement
DSEI 2025
Hidden galaxies may hold answers about Universe

Space

Hidden galaxies may hold answers about Universe

10 April 2025

A team of scientists led by RAL Space, operated by the Science and Technology Facilities Council (STFC) and Imperial College London, has created the deepest ever image of the Universe in long far-infrared wavelengths, using newly processed data from the Herschel Space Observatory to reveal almost 2,000 distant galaxies, that could help answer key ...

Airbus completes manufacturing of the first MetOp-SG satellite

Space

Airbus completes manufacturing of the first MetOp-SG satellite

8 April 2025

Airbus has successfully completed the manufacturing and testing of the first of its advanced MetOp-SG A satellites, marking a significant milestone in the European Space Agency’s (ESA) and EUMETSAT’s global meteorological mission.

Advertisement
ODU RT