in Space

Teledyne e2v delivers European sat processors to Thales Alenia Space

Posted 19 May 2017 · Add Comment

Teledyne e2v has set a European mission first by re-engineering commercial microprocessors that provide Thales Alenia Space with a major increase in processing speed and power for lightning imaging satellites' on-board computer (OBC).


Thales Alenia Space has gained a 10-times increase in the processing speed and power for its OBC, with the design and qualification process cut by up to four years, thanks to Teledyne e2v’s expertise of transforming the latest commercial grade processors into spaceflight-ready models.

In a first for a European mission, Teledyne e2v’s re-engineered PC7448 microprocessors will be used at the heart of Thales Alenia Space’s OBC that serve the Lightning Imager (LI) systems on EUMETSAT’s next generation Meteosat geostationary meteorological satellites.
 
Four Meteosat MTG-I satellites, scheduled for launch from 2019, will be equipped with LI systems that will place a major demand on their on-board computers to deliver the sensitivity and discrimination required for near real-time lightning detection over the Earth’s full hemisphere. Teledyne e2v has helped Thales Alenia Space meet this challenge by re-engineering commercial grade PC7448 1.3 GHz processors in accordance with NASA’s MIL-PRF-38535 Class Y (QML Y) quality standard that guarantees best-in-class reliability. Now, for the first time, Thales Alenia Space can utilise a microprocessor offering the same performance as the latest desktop PCs in a spaceflight-ready version capable of surviving the rigours of a 15-year mission.
 
The satellite LI systems will facilitate the monitoring and tracking of active convective areas and storm life cycles critical for nowcasting and very short range forecasting of severe weather events. Monitoring of lightning also helps assess the impact of climate change on thunderstorm activity. Lightning is a major source of harmful atmospheric nitrogen oxides (NOx) that play a key role in the ozone conversion process and acid rain generation. A detailed knowledge of the global distribution of lightning is therefore a prerequisite for studying and monitoring NOx-related physical and chemical processes in the atmosphere.
 
“The design and qualification of space microprocessors to ensure that they can withstand exposure to shock, vibration, extreme temperatures and radiation can take on average, five to seven years,” said Nicolas Chantier, Teledyne e2v’s Marketing Director for Signal Processing Solutions. “That means any processor designed specifically for space is effectively way behind the current state-of-the-art by the time it is ready for launch. We have found a way to complete this process in one third of the time, with no compromise on quality, by adapting powerful commercial grade processors and up-screening them for space.”
 

* required field

Post a comment

Other Stories
Advertisement
Latest News

QinetiQ brings autonomy expertise to European research programme

QinetiQ is to play a pivotal role in OCEAN2020, the first research programme awarded by the European Defence Agency as part of its European Defence Fund initiative.

Lincad wins Leonardo power management contract

Lincad, the British manufacturer of bespoke batteries, chargers and power management systems for military applications, is pleased to announce that it has won a further contract with Leonardo to supply batteries and other power

MAEL and Icelandair expand maintenance partnership

Monarch Aircraft Engineering (MAEL) has won an expanded maintenance commitment from Icelandair.

Oxford Airport hosts hullo launch

Following the successful introduction of the hullo Aircrew brand at EBACE last year, the technology start-up has officially launched its industry-first software platform at London Oxford Airport, which is designed to connect

Babcock to develop Busan base

Further strengthening its international reach and its presence in South Korea, Babcock International has announced that it is to open a facility in Busan, South Korea’s second largest city after its capital Seoul.

Innalabs secures €2.6m ESA contract.

InnaLabs has announced a €2.6m contract with ESA to design, develop, manufacture and test a highly reliable radiation hardened 3-axis gyroscope, used for measuring angular velocity or maintaining orientation of satellites.

Aviation Africa SK18418
See us at
Aviation Africa BT18418SMI FAVWSBT1402060618SMI HelicopterTBT1402240518FIL18 BT111017220718SMI FAVSABT2411120418S&P BT281117080318