in Defence

SEA addressing feasibility of wireless maritime comms at UDT

Posted 24 May 2017 · Add Comment

SEA will be outlining how it is working to utilise wireless technology to fulfil next generation maritime communications requirements at the Underwater Defence Technology (UDT) Conference in Bremen next week (30 May - 1 June).



Above: SEA’s Richard Brough will highlight wireless technology as the future of maritime communications at UDT.


SEA delivers the common External Communications System (cECS) across the entire UK Royal Navy submarine fleet and has unique experience and insight into how current systems operate and how they have evolved.
 
Presenting at UDT, SEA Senior Principal Consultant Richard Brough will explore some of the more recent advances in wireless technologies and consider the various merits of different wireless standards that will enable architects and operators to begin exploiting these technologies in their networks.

He explained: “SEA’s vision of future communications architectures is based on a pragmatic approach that understands the many conflicting requirements and priorities inherent in submarine communications.”



Traditionally, submarine communication networks have consisted of point to point wired architectures and fixed terminals for network access. Advances in wireless technologies such as LTE NB-IoT, 5G NR, WiGig and Li-Fi offer new opportunities for innovative services and applications to be carried over wireless bearers. 

An example of how commercial networks are becoming more relevant is the global adoption of LTE for public safety which is driving mission critical capability into commercial LTE networks. 

At the same time other technologies such as WiGig (802.11ad) are delivering Gigabit data rates to support local dissemination of high bandwidth streaming media offering the potential for immersive technologies. 

The presentation will provide an opportunity to review some of the strengths and weaknesses that are inherent in different wireless technologies and will specifically focus on facets that are of interest for high integrity communication system design.

“In addition, we will explore how the adoption of wireless technologies might help reduce through-life costs by simplifying the integration of newer capabilities or support the extension of legacy networks through low impact upgrades.  We will also address some of the key challenges and barriers to faster adoption,” added Richard.

 

* required field

Post a comment

Other Stories
Advertisement
Latest News

ADS encourages partnership with industry to enhance national security

ADS, the UK trade organisation representing the aerospace, defence, security and space sectors - with over 1,000 member businesses - said today that the Government should work more collaboratively with industry to deliver

Declan Collier joins aviation leaders to debate industry challenges

London City Airport CEO Declan Collier will be one of the keynote speakers at the ATAG Global Sustainable Aviation Summit in Geneva (3-4 October), where industry issues such as protectionism, sustainability and modernisation will be

Kuehne + Nagel awarded ERS Gold Award by MoD

The Ministry of Defence (MoD) has awarded Kuehne + Nagel with the Employer Recognition Scheme (ERS) Gold Award, the highest possible badge of honour for organisations demonstrating support to Armed Forces Personnel.

USW launches aviation engineering education at Dubai South

The University of South Wales (USW) has announced that it will deliver degrees to aerospace engineering students as a key partner at the UAE's new Dubai South development.

General Dynamics delivers two AJAX platforms for GAT

In a major milestone for the AJAX programme, General Dynamics Land Systems–UK has presented vehicles to Government Acceptance Testing (GAT) for assurance testing prior to delivery to the British Army.

Aviation industry heads to Barcelona for World Routes

Barcelona will be the centre of global aviation when the annual World Routes forum (23-26 September) opens in the city this weekend.

Aviation Africa SK18418
See us at
SMI AirMissBT0305251017SMI MilSat BT2907101117SMI12DE BT203280917Advanced Engineering BT1007021117SMIUAV BT1005280917SMI FAV BT1007161117Aviation Africa BT18418