in Aerospace / Events

Renishaw adds innovative edge to Land Rover BAR catamaran

Posted 7 June 2017 · Add Comment

As an official supplier to America's Cup team Land Rover BAR and member of the Technical Innovation Group, which brought the best of British engineering together to develop advanced technologies for the team and provide them with a competitive edge, Renishaw has provided metal additive manufacturing (AM) and encoder technology expertise for the team's racing catamaran.

The Renishaw additive manufacturing team, including Product Marketing Engineer, David Ewing, collaborated with Land Rover BAR design team for the manufacture of custom made manifolds using Renishaw metal additive manufacturing (3D printing) technology, whilst Technical Leader Dr. Finlay Evans and his team designed a special position sensor (encoder) for the wing flap control surfaces, which allowed much better direct feedback to be achieved.

Above: (left to right) Renishaw's David Ewing & Dr. Finlay Evans.
Courtesy Renishaw.

Land Rover BAR's America's Cup Class (ACC) race boat Rita (code name R1) is the culmination of 85,000 hours of design and build, on the water testing and rigorous construction.

The 15 m racing catamaran has 130 m of hydraulic pipes and over 1,200 m of electronic and electric cabling connecting 190 sensors. The wing has a sail area of 103 m2 and is 23.5 m high, which is comparable to the main wings of an A320 aircraft. Each hull on R1 features a manually deployed dagger board that bends beyond 90 degrees to create a hydrofoil.

Above: The Land Rover BAR race yacht compared to an Airbus A320.
Courtesy Renishaw.

Once the boat speed reaches around 16 knots (18 mph) the force of the water over the foils creates sufficient lift to raise the boat clear of the water so that it literally flies above the water. This state of ‘flying' reduces drag and improves efficiency to increase speed.

The R1 at speed in Bermuda.
Copyright Harry KH / Land Rover BAR.

On the R1, the control surfaces are all driven by hydraulic actuators. Hydraulic pressure is provided by the sweat and toil of the crew's ‘grinders', who turn specialised hand-cranks. There are no batteries (except to provide electrical power for computers and sensors), the four grinders act as a human engine to generate all the hydraulic energy required.

Land Rover BAR understood the potential of additive manufacturing to save weight and improve the efficiency of its hydraulic system. Put simply, this allowed the boat's designers to create a perfect balance between the performance of the hydraulic system and the energy required to run it. This in turn helps the grinders conserve energy whilst still allowing the boat to perform at the optimal level.

Removing Land Rover BAR demonstration metal AM manifolds from Renishaw RenAM 500M metal additive manufacturing system.

Also, when the Land Rover BAR team realised that control precision could be compromised by the somewhat convoluted load-path between actuator and control surface, they looked to measure the control surface movements directly and contacted Renishaw for help, which is where Dr. Finlay Evans and his team came in, designing a special position sensor for the wing flap control surfaces, which improved direct feedback to allow the helmsman and crew to race the boat with more precision whilst enabling the capture of high-quality performance data during development and training.



* required field

Post a comment

Other Stories
Latest News

Aviation Skills Partnership Awards open for nominations

Nominations are now open for the 2018 Aviation Skills Awards which recognise and reward those who are doing exceptional work in aviation and training.

Cranfield to lead on MK:U

Plans for a new university – currently known as MK:U – which have been in development since late last year, took a big step forward today, with the announcement that Milton Keynes Council has chosen Cranfield University as the lead higher

G&P to debut at Farnborough International Airshow

Quality management experts G&P are exhibiting at the Farnborough International Airshow for the first time with the support of the Midlands Aerospace Alliance.

Karen Smart appointed Managing Director of East Midlands Airport

Karen Smart, currently Director of Landside Operations at London Stansted Airport, has been appointed Managing Director of East Midlands Airport.

SafeSkys awarded RAF contract in Scotland

SafeSkys has been awarded the contract for provision of Airfield Wildlife Control Services for the Royal Air Force (RAF) in Scotland at RAF Lossiemouth, RLG Kinloss and RAF Leuchars.

Gatwick to trial autonomous vehicles

Gatwick is to be the first airport in the world to trial autonomous vehicles to shuttle staff across the airfield.

Aviation Africa SK18418
See us at
SMI HelicopterTBT1402240518SMI FAVWSBT1402060618SMI FAVSABT2411120418Aviation Africa BT18418FIL18 BT111017220718