in Aerospace / Space

Galileo PRS signal accessed via the cloud

Posted 2 June 2016 · Add Comment

In a world first, the Public Regulated Service (PRS) of the new European satellite network Galileo has been delivered via the 'cloud', paving the way for its automated use by the security and emergency services and critical national infrastructure (CNI) as the secure position and timing service of choice across Europe.



Above: An Unmanned Aerial Vehicle (UAV) was used in one of the scenarios.

Accessing PRS via the cloud overcomes a major problem for some potential PRS users due to the security protocols required when managing the cryptographic keys needed to access the signals.

Galileo is a Global Navigation Satellite System (GNSS), one of a number used to work out our location and time anywhere on the planet. These systems offer a range of different services, some are open access for anyone and some are secure for users who need additional assurance. PRS is Galileo's secure signal, available to government authorized users; usually those integral to a country's operation that require location, navigation or timing information to operate. PRS signals are encrypted and decrypted by cryptographic keys which, until now, are stored on the PRS receiver and managed by the PRS user. However, the system developed by NSL and QinetiQ places these keys in a secure server located in the 'cloud', accessed via the internet, making PRS available as a service for secure, authenticated position and timing information.

On the 18th May 2016, Ordnance Survey in Southampton successfully demonstrated three different “user scenarios” - an Unmanned Aerial Vehicle (UAV), a surveyor with a GNSS receiver attached to a mobile phone and a static reference receiver. In each scenario, a receiver captured signals from both Galileo open access and PRS signals, and also open GPS signals. The three different users were located around the Ordnance Survey site, simulating routine tasks. The signals captured by their receivers were sent, via cellular 3G links, into the ‘cloud’ to be processed. Position and time was calculated from the open-access signals by servers at the NSL site in Nottingham. The secure PRS signals were decrypted and authenticated by a QinetiQ site in Malvern that was hosting the cryptographic keys. This confirmed the position and timing reported by the open-access signals.

The UAV's pre-programmed flight path was tracked in near real-time, allowing the operator on the ground to navigate. The static receiver had the timestamps and location verified. This is the first live demonstration of cloud based access to Galileo PRS over the internet. The authenticated position and time was possible despite only a limited Galileo constellation at the present time.

Chris Campbell, UK Competent PRS Authority, UK Space Agency comments: "This world first in automating the use of the Galileo PRS is a huge step on the way to its implementation. Making the system as user friendly for critical public services as possible both enables universal take up and increases where and how PRS can be used. Not only can emergency response services, transport networks and other CNI be tracked securely and used as efficiently as possible, but automated systems such as home detention curfew or rail traffic management can access PRS and become more resilient and effective than ever before."

Nigel Davies, Head of Secured Navigation, QinetiQ, adds: "As the number of Galileo satellites continues to grow - 9 are operational, out of a total of 30 planned satellites - the services that can use it will expand dramatically until full operational capability is reached in 2020. The security environment is complex, in particular around the use, storage and distribution of the keys required to access the service. By supplying PRS as a cloud service, QinetiQ and NSL have opened PRS use to a potentially much wider range of users and applications whilst protecting the security of PRS service."

Neil Ackroyd, Chief Operating Officer, Ordnance Survey, concludes: “Ordnance Survey believes that PRS could enable new opportunities to meet government needs and provide efficiencies. This technology has an interesting future. We were excited to be the first user demonstrator of PRS. OS operates critical GNSS positioning infrastructure in the form of OS Net which is used across government, industry and academia. As the GNSS constellations grow, OS will develop OS Net to support them.“

QinetiQ, NSL and Ordnance Survey will continue developing this service, with further trials planned for the next 12 months that will bring end users into the project.
 

* required field

Post a comment

Other Stories
Advertisement
Latest News

Vistara receives its first A320neo

Airbus has delivered the first A320neo to Vistara, a Delhi based full service airline and joint venture between Tata Sons Ltd. and Singapore Airlines (SIA).

QinetiQ and Rockwell Collins partner on MCOS and GNSS receivers

QinetiQ and Rockwell Collins have signed a global Alliance Agreement to collaborate on the development of next generation high assurance, Multi Constellation Open Service (MCOS) and secured Global Navigation Satellite System

BMT signs submarine framework agreement with NDMA

BMT Defence Services (BMT) has won a contract with the Norwegian Defence Materiel Agency (NDMA) to provide consultancy support for the New Norwegian Submarine Acquisition programme.

QinetiQ to enable virtual training links across RAF bases

A QinetiQ project is to allow Royal Air Force (RAF) Typhoon pilots to train together in virtual environments from different locations by linking simulators at the squadrons' Main Operating Bases (MOBs).

Rolls-Royce tests world's most powerful aerospace gearbox

Rolls-Royce has started power runs of the world's most powerful aerospace gearbox for the first time, marking another significant step in the development of its new UltraFan engine design.

Gatwick establishes first airport indoor navigation system

Around 2000 beacons have been installed across Gatwick Airport's two terminals providing an indoor navigation system that is much more reliable than GPS and that enables augmented reality wayfinding for passengers a world first for

SMI FAVWS SK0504290617
See us at
SMIUAV BT1005280917SMI12DE BT203280917DSEI LB0911150917SMI AirMissBT0305251017SMI FAVWS BT0504290617