in Aerospace / Defence / Space

Chances of hypersonic travel heat up with new materials discovery

Posted 6 July 2017 · Add Comment

Researchers at The University of Manchester in collaboration with Central South University (CSU), China, have created a new kind of ceramic coating that could revolutionise hypersonic travel for air, space and defence purposes.

Hypersonic travel means moving at Mach five or above, which is at least five times faster than the speed of sound. When moving at such velocity the heat generated by air and gas in the atmosphere is extremely hot and can have a serious impact on an aircraft or projectile’s structural integrity. That's because the temperatures hitting the aircraft can reach anywhere from 2,000 to 3,000 °C.

The structural problems are primarily caused by two processes called oxidation and ablation. This is the when extremely hot air and gas remove surface layers from the metallic materials of the aircraft or object travelling at such high speeds. To combat the issue materials called ultra-high temperature ceramics (UHTCs) are needed in aero-engines and hypersonic vehicles such as rockets, re-entry spacecraft and defence projectiles.

However, at present, even conventional UHTCs can’t currently satisfy the associated ablation requirements of travelling at such extreme speeds and temperatures. However, the researchers at The University of Manchester’s and the Royce Institute, in collaboration with the Central South University of China, have designed and fabricated a new carbide coating that is vastly superior in resisting temperatures up to 3,000 °C, when compared to existing UHTCs.

Chances of hypersonic travel heat up with new materials discovery Professor Philip Withers www.adsadvance.co.uk

Professor Philip Withers (above), Regius Professor from The University of Manchester, said: “Future hypersonic aerospace vehicles offer the potential of a step jump in transit speeds. A hypersonic plane could fly from London to New York in just two hours and would revolutionise both commercial and commuter travel.

“But at present one of the biggest challenges is how to protect critical components such as leading edges, combustors and nose tips so that they survive the severe oxidation and extreme scouring of heat fluxes at such temperatures cause to excess during flight.”

So far, the carbide coating developed by teams in both University of Manchester and Central South University is proving to be 12 times better than the conventional UHTC, Zirconium carbide (ZrC). ZrC is an extremely hard refractory ceramic material commercially used in tool bits for cutting tools.

The much improved performance of the coating is due to its unique structural make-up and features manufactured at the Powder Metallurgy Institute, Central South University and studied in University of Manchester, School of Materials. This includes extremely good heat resistance and massively improved oxidation resistance.

What makes this coating unique is it has been made using a process called reactive melt infiltration (RMI), which dramatically reduces the time needed to make such materials, and has been in reinforced with carbon–carbon composite (C/C composite). This makes it not only strong but extremely resistant to the usual surface degradation. 

Professor Ping Xiao, Professor of Materials Science, who led the study at The University of Manchester explains: “Current UHTCs used in extreme environments are limited and it is worthwhile exploring the potential of new single-phase ceramics in terms of reduced evaporation and better oxidation resistance. In addition, it has been shown that introducing such ceramics into carbon fibre- reinforced carbon matrix composites may be an effective way of improving thermal-shock resistance.”
 
A paper - Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000°C - has been published in Nature Communications. It is a collaborative research between Profs Ping Xiao and Philip Withers (Royce Institute) in School of Materials, University of Manchester and Dr. Yi Zeng and Prof. Xiang Xiong in Powder Metallurgy Research Institute, Central South University of China.

 

* required field

Post a comment

Other Stories
Advertisement
Latest News

SEA supplying TLS to navies in South East Asia

Cohort company SEA is supplying its Torpedo Launcher Systems (TLS) to three South East Asian navies that have signed up for a solution based on technology originally developed for the UK Royal Navy.

Bristol Airport and SWRnewstar win Waste2Zero award

SWRnewstar has won the Waste2Zero Best Waste Project Communication & Stakeholder Engagement Award in partnership with its customer Bristol Airport.

Defence Secretary checks progress of first City Class Type 26 frigate

The Secretary of State for Defence, Gavin Williamson MP, visited BAE Systems’ Clyde shipyards yesterday to gain an insight into the Company’s next generation digital ship design approach for the Type 26 frigates, before viewing the

Drukair opts for an A320neo

Drukair, the flag carrier of Eastern Himalayan Kingdom of Bhutan, has signed a purchase agreement for one A320neo to support its growth plans and complement its existing fleet of three A319s.

BA appoints Angela Williams as Group People Director

British Airways today announced that Maria Da Cunha, Group HR & Legal Director, is stepping down from British Airways after 17 years and Angela Williams is appointed to the role of Group People Director (joining the business on 4 June

Dnata awarded UK MHRA certification for Good Distribution Practice

Global air services provider and UK ground handler, dnata, has been awarded certification for Good Distribution Practice (GDP) by the UK Medicines and Healthcare Products Regulatory Agency (UK MHRA).

ODU SK191217191218
See us at
SMI FAVWSBT1402060618SMI HelicopterTBT1402240518FIL18 BT111017220718